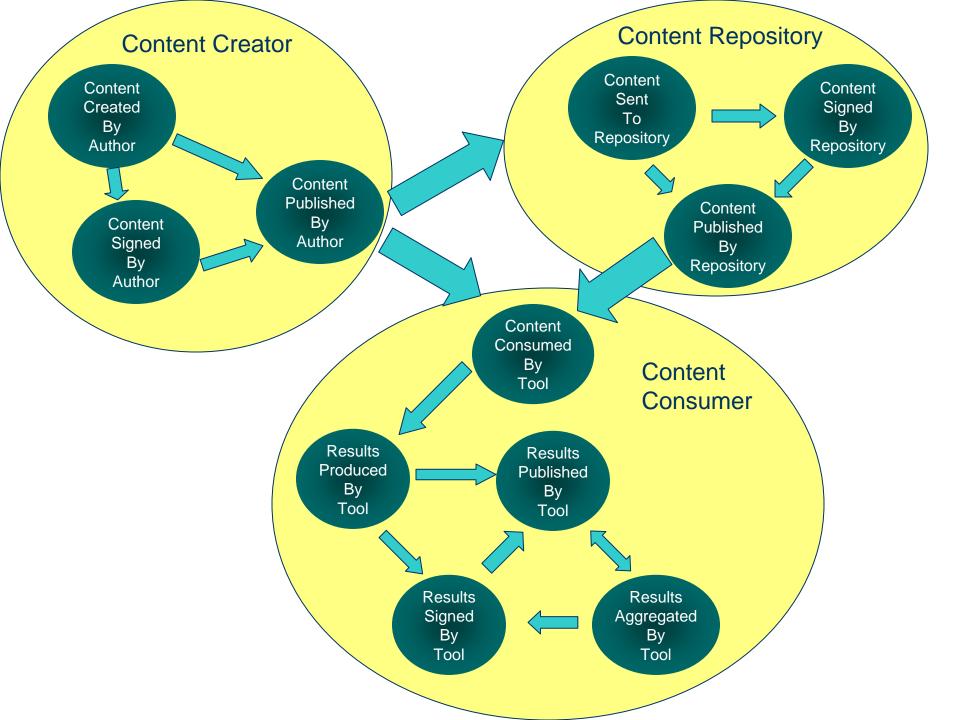
Developing a Trust Model for Security Automation Data

2/24/2010 Security Automation Developer Days Winter 2010

Agenda


- Goals
- Use Cases
- Cryptographic Message Syntax (RFC 5652)
- XML Signature Syntax and Processing Overview
- Algorithms and Parameters
- Signature types
- Reporting
- Archiving

Vision

- Allow content to be created and trusted in a consistent way by end users
 - Content Consumers
 - Content Creators
 - Tool Vendors

Design Goals

- Consistent
 - Interoperability between products
 - Useful to any content type
 - Support community based content
- Extensible
 - The approach will likely evolve over time
 - Minimize technology lock-in
 - Incremental improvements
 - Facilitate vendor extension/innovation

A Content Management Problem

- Reusability
 - Tailoring
 - Augmentation
- Versioning
- Delivery
 - Push
 - Pull
 - Publish/Subscribe
- Provenance
 - Authentication
 - Non-repudiation
 - Integrity
 - Authorization
 - Encryption

- Source Content
 - Compositional
- Results
 - Aggregation

Near-Term Goals

- Specification of result payloads
- Establish data integrity and trusted content
 - Foster content reuse
 - Enable quality assurance processes
- Express signatures in a common format
- Provide mechanism to establish provenance of source content and produced results
- Future version of SCAP

Future Goals

- Compositionality
 - Referential
 - Tailoring
- Encryption
- Authorization

Non-Goals

Key exchange is out of scope

Content Use Case (input)

- A content consumer needs to verify authenticity of a content stream
 - Content published by an author or authority
 - Validate that content has not been altered since publication by the author or authority
 - Consumers can establish trust with respect to content based upon identity of author or authority

Content Use Case (prior knowledge)

- Re-establish trust to content based upon prior knowledge
 - Assist with solving referential trust
 - Could be used in lieu of using identity of the author or authority

Content Quality Assurance Use Case

- An individual or organization signs content to assert confidence or trust in content
 - QA function works in a defined environment
 - Organizational policy asserts only trusted content may be run
 - Need to maintain provenance information who originally published
 - Traceability

Compositional Content Use Case

- A content consumer would like to know and verify that a content stream is composed of multiple source streams
 - An author may compose a data stream from multiple data streams and augment with own contribution
 - Allow reporting of results derived from a source stream to be performed independently of other source streams
 - Focus QA efforts only on augmented portion
 - Identify differences between source stream and composed stream

Results Use Case

- An organization needs results signed at the point of creation in order to verify authenticity of results
 - Results generated by a tool

Results Use Case (expanded)

- An organization needs results signed with source content identity and/or target identity at the point of creation in order to verify authenticity of produced results
 - Results created based on responses of a machine endpoint (e.g. OVAL) or individual (e.g. OCIL) – a target
 - Expanded to include identity of source content and/or target
 - Establishes identity of tool, target, and source content
 - Assumes targets have an identity capability

Aggregated Results Use Case

- Aggregation tools need to combine results and sign aggregated results
 - Maintain source data to allow consumers of aggregated data to validate findings at a later point
 - Provides traceability of aggregated results

Cryptographic Message Syntax

- IETF RFC 5652
 - PKCS #7
- Treats content as binary data
- A variety of implementations already available

XML Signature Syntax and Processing Overview

- W3C Standard
- Specialized to handle XML data
 - Canonicalization
 - Transform
- Defers to applications for validation logic
 - Public key is optional
- Hooks for X.509 Certificates
- Implemented within Java SE 6
- Other implementations?

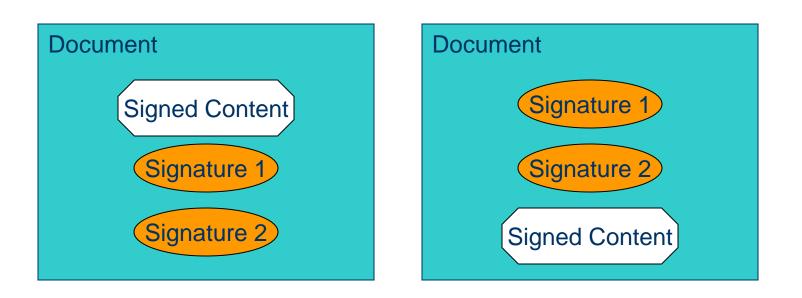
XML Signature Simple Example

<Signature> <SignedInfo> <SignatureMethod/> <CanonicalizationMethod/> <Reference> <Transforms> <DigestMethod> <DigestValue> </Reference> <Reference/> etc. </SignedInfo> <SignatureValue/> <KeyInfo /> <Object /> </Signature>

XML Signature W3C Example

- [s01] <Signature Id="MyFirstSignature" xmlns="http://www.w3.org/2000/09/xmldsig#">
- [s02] <SignedInfo>
- [s03] <CanonicalizationMethod Algorithm="http://www.w3.org/2006/12/xml-c14n11"/>
- [s04] <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>
- [s05] <Reference URI="http://www.w3.org/TR/2000/REC-xhtml1-20000126/">
- [s06] <Transforms>
- [s07] <Transform Algorithm="http://www.w3.org/2006/12/xml-c14n11"/>
- [s08] </Transforms>
- [s09] <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
- [s10] <DigestValue>dGhpcyBpcyBub3QgYSBzaWduYXR1cmUK.../DigestValue>
- [s11] </Reference>
- [s12] </SignedInfo>
- [s13] <SignatureValue>...</SignatureValue>
- [s14] <KeyInfo>
- [s15a] <KeyValue>
- [s15b] <DSAKeyValue>
- [s15c] <P>...</P><Q>...</Q><G>...</Y>
- [s15d] </DSAKeyValue>
- [s15e] </KeyValue>
- [s16] </KeyInfo>
- [s17] </Signature>

Algorithms and Parameters

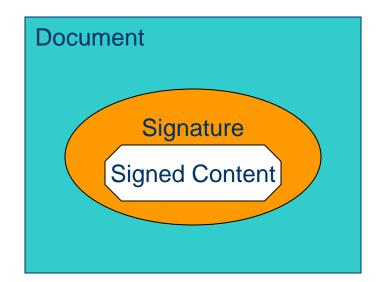

- Based on recommendations in FIPS 186-3
- RSA
 - 2048-bit key
 - SHA-256
 - PKCS #1.5 padding
- Elliptical Curve Digital Signature Algorithm
 - 256-bit Prime Curve
 - SHA-256

Enveloped

 Signature embedded within the document containing signed content

2/24/2010 Security Automation Developer Days Winter 2010

Enveloped Consequences

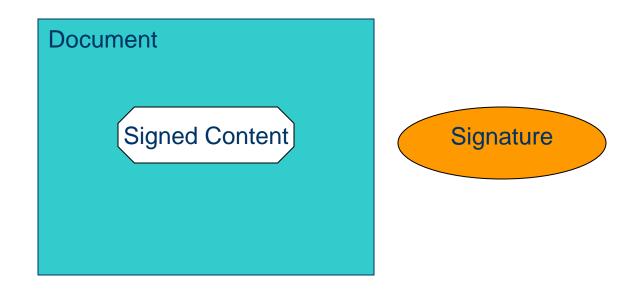

- Document must have a placeholder to hold the signature
 - Higher coordination costs between specifications to maintain consistency of use
- Signed/unsigned content has same content format
- Signature and content are coupled together

Enveloping

Signature contains the signed content

2/24/2010 Security Automation Developer Days Winter 2010

Enveloping Consequences


- Processing of document requires processing of signature syntax
 - Signed/unsigned content may have different formats
- Signature and content are coupled together

Detached

Signatures are separate from the content

2/24/2010 Security Automation Developer Days Winter 2010

Detached Consequences

- Processing of signature and document are separated
 - Signed/Unsigned content is identical
- Signature format and content format can revision independently
- Signature and content are separated
 - Another thing to track

Reporting

- What additional information do we need to include?
 - Date

_ ?

- Tool Identity
- Source Content
- Target Identity

Archiving

- Signing documents which may no longer be trusted
 - Key Expiration
 - Key Revocation
 - Weakness in crypto

Comments

emerging-specs@nist.gov

2/24/2010 Security Automation Developer Days Winter 2010

References

- XML Signature Syntax and Processing
 - http://www.w3.org/TR/xmldsig-core/
- Cryptographic Message Syntax (RFC 5652)
 - http://tools.ietf.org/html/rfc5652