
TM

Challenge
Software acquirers want assurance that the software

products they are obtaining are reviewed for known types

of exploitable security weaknesses, and the acquisition

groups in large government and private organizations are

moving forward to use these types of reviews as part of

future contracts. Until recently the tools and services that

could be used for this type of review were new at best and

there were no nomenclature, taxonomies, or standards to

define the capabilities and coverage of them. That made it

difficult to comparatively decide which tool or service was

best suited for a particular job. What was needed was a

standard list and classification of software security weak-

nesses to serve as a unifying language of discourse and a

measuring stick for tools and services.

Solution
CWE is a community-developed formal list or dictionary

of common software weaknesses. Leveraging the diverse

thinking on this topic from academia, the commercial

sector, and government, CWE unites the most valuable

breadth and depth of content and structure to serve as a

standard definition. Our objective is to help shape and

mature the code security assessment industry and also

dramatically accelerate the use and utility of software

assurance capabilities for organizations in reviewing the

software systems they acquire or develop.

Working from these collections—as well as those con-

tained in the other information sources listed on the CWE

Web site—we developed the current draft of the CWE List,

which includes over 600 separate weaknesses and we have

created a branding and compliance program to acknowl-

edge and validate tools and services using CWE Identifiers.

Community
The following organizations are actively contributing to

the development of CWE: Apple, Cenzec, Core Security,

Common Weakness Enumeration — CWE™
A Community-Developed Dictionary of Software Weakness Types

CWE, targeted to developers and security practitioners, is a formal list
of software weaknesses that:

Serves as a common language for describing software
security weaknesses in architecture, design, or code.

Serves as a measuring stick for software security tools
targeting these weaknesses.

Provides a common baseline definition for weakness
identification, mitigation, and prevention efforts.

Is industry-endorsed via the CWE Community and CWE-
Compatible Products.

Some Common Types of Software Weaknesses:
■■ Buffer overflows, format strings, etc.
■■ Structure and validity problems
■■ Common special element manipulations
■■ Channel and path errors
■■ Handler errors
■■ User interface errors
■■ Pathname traversal and equivalence errors
■■ Authentication errors
■■ Resource management errors
■■ Insufficient verification of data
■■ Code evaluation and injection
■■ Randomness and predictability

The MITRE Corporation maintains CWE and its public Web site,

manages the compatibility program, and provides impartial

technical guidance to the CWE Community throughout the

process to ensure CWE serves the public interest.

CWE

CWE
Compatibility

Test Repositories

Univ. of
Maryland

MIT Lincoln Labs

GMU

UC
Berkley

Purdue

Oracle

Security
University

North Carolina State
University (NCSU)

IBM

SPI Dynamics

VERACODE

Coverity

NSA/CTC

James Madison
University (JMU)

Kestrel
Technology

WatchFire

Cenzic

Core Security

Parasoft

Stanford
SEI - CERT CC

Unisys

KDM Analytics

Building CWE & Consensus

CVE

NVD

Previous
Research

 Other
 Publicly
 Available
Work

CVEs
from

PLOVER

Publicly Available:
Security Taxonomies,
Research, and
Checklists

DHS / NIST SAMATE

Preliminary

OMG
SySA

TF OWASP/
WASC

DHS
SwA
CBK

DHS
BSI

Web Site

SEI
Coding

Standards

SANS
Skills

Assessment

MITRE
202 Burlington Road, Bedford, MA 01730-1420

www.mitre.org

MITRE Learn More – https://cwe.mitre.org

HP, GrammaTech, Klocwork, IBM,

Parasoft, Veracode, Symantec, CAST,

EC-Council, EMC, Japan’s Information-

technology Promotion Agency, ISC2,

NIST, and Red Hat.

We are also leveraging the work,

ideas, and contributions of researchers

at Armorize Technologies, Carnegie

Mellon’s CERT/CC, CERIAS/Purdue

University, Cigital, KDM Analytics,

Kestrel Technology, Oracle, OWASP,

SANS Institute, SkillBridge, UNISYS,

WASC, and WhiteHat Security. See

the CWE Web site for a complete list

of participants and how your organi-

zation can contribute.

CWE Entries include:
■ name of the weakness

type
■ description of the type
■ alternate terms for the

weakness
■ description of the be-

havior of the weakness
■ description of the ex-

ploit of the weakness
■ likelihood of exploit for

the weakness
■ description of the

consequences of the
exploit

■ potential mitigations
■ node relationship

information
■ source taxonomies
■ code samples for the

languages/architectures
■ CVE identifiers of vul-

nerabilities for which
that type of weakness
exists

■ references

CWE List
International in scope and free for

public use, CWE provides a unified,

measurable set of software weaknesses

that will enable more effective discus-

sion, description, selection, and use of

software security tools and services that

can find these weaknesses in source

code.

The CWE List is currently offered in

many views including:
Dictionary - an alphabetic view of
the list’s enumerated weaknesses
Classification Tree - provides
access to individual weaknesses
with more simplicity to

various potential users through
classification layering
Graphical - allows users to better
understand individual weaknesses
in the classification tree through
their broader context and
relationships
Slices-by-Topic - provide selective
subsets of CWE by language or
some other attribute

XML/XSD of CWE content — in

toto or by slice — is also available.

Additional formats and views will be

added in the future. Visit the CWE

Web site for the latest information.

CWE ID 415 Double Free

Description The product calls free() twice on the same memory address, potentially leading to modification of unexpected memory locations.

Likelihood of Exploit Low to Medium

Common Consequences Access control: Doubly freeing memory may result in a write-what-where condition, allowing an attacker to execute arbitrary code.

Potential Mitigations Architecture and Design: Choose a language that provides automatic memory management.
Implementation: Ensure that each allocation is freed only once. After freeing a chunk, set the pointer to NULL to ensure the pointer cannot be
freed again. In complicated error conditions, be sure that clean-up routines respect the state of allocation properly. If the language is object
oriented, ensure that object destructors delete each chunk of memory only once.
Implementation: Use a static analysis tool to find double free instances.

Demonstrative Examples Example 1: The following code shows a simple example of a double free vulnerability. Double free vulnerabilities have two common (and
sometimes overlapping) causes: - Error conditions and other exceptional circumstances - Confusion over which part of the program is
responsible for freeing the memory Although some double free vulnerabilities are not much more complicated than the previous example, most
are spread out across hundreds of lines of code or even different files. Programmers seem particularly susceptible to freeing global variables
more than once.
Example 2: While contrived, this code should be exploitable on Linux distributions which do not ship with heap-chunk check summing turned
on.

Observed Examples CVE-2002-0059 - Double free from malformed compressed data.
CVE-2003-0545 - Double free from invalid ASN.1 encoding.
CVE-2003-1048 - Double free from malformed GIF.
CVE-2004-0642 - Double free resultant from certain error conditions.
CVE-2004-0772 - Double free resultant from certain error conditions.
CVE-2005-0891 - Double free from malformed GIF.
CVE-2005-1689 - Double free resultant from certain error conditions.

Node Relationships Child Of - Operation on Resource in Wrong Phase of Lifetime (666) in View (1000)
Child Of - Duplicate Operations on Resource (675) in View (1000)
Child Of - Resource Management Errors (399) in View (699)
Peer Of - Use After Free (416) in View (699 & 1000)
Peer Of - Write-what-where Condition (123) in View (700)
Child Of - Indicator of Poor Code Quality (398) in View (700)
Child Of - Weaknesses that Affect Memory (633) in View (631)
Child Of - CERT C Secure Coding Section 08 – Memory Management (MEM) (742) in View (734)
Member Of - Weaknesses Examined by SAMATE (630) in View (630)
Peer Of - Signal Handler Race Condition (364) in View (1000)

Source Taxonomies PLOVER - DFREE - Double-Free Vulnerability
7 Pernicious Kingdoms - Double Free
CLASP - Doubly freeing memory
CERT C Secure Coding - MEM00-C - Allocate and free memory in the same module, at the same level of abstraction
CERT C Secure Coding - MEM01-C - Store a new value in pointers immediately after free()
CERT C Secure Coding - MEM31-C - Free dynamically allocated memory exactly once
CERT C Secure Coding - MEM00-C - Allocate and free memory in the same module, at the same level of abstraction
CERT C Secure Coding - MEM01-C - Store a new value in pointers immediately after free()
CERT C Secure Coding - MEM31-C - Free dynamically allocated memory exactly once

Applicable Platforms C
C++

White Box Definitions A weakness where code path has:
1. start statement that relinquishes a dynamically allocated memory resource
2. end statement that relinquishes the dynamically allocated memory resource

