
OVAL for Mobile Devices

1

Session Agenda

 Introduction to Mobile Device Security

 Policy & Configuration Guidance Landscape

 Mobile Operating System (MOS) Security

 Mobile Device Management (MDM) Suites

 MDM-based Approach to Mobile Security Automation

 Development of OVAL Schemas for Mobile Devices

 Android OVAL Schema

OVAL for Mobile Devices

2

Introduction to Mobile Device Security

Mobile device ubiquity
– Comparable to laptops in terms of internal hardware specifications, available

applications (“apps”), and data/network connectivity

Limited enterprise control
– Prioritization of features, visuals and social network interoperability over

security and manageability

We need to fill in the gaps
– MOS and MDM platforms have matured in the past two years to provide a

greater level of security configurability and integrability, but still lack some
important capabilities

– Lack of MOS security functionality creates implications across the entire
mobility ecosystem, including limiting capabilities of MDM suites

– SCAP may be a way to supplement existing security measures and provide
additional reporting and continuous monitoring capabilities

3

Policy & Configuration Guidance Landscape

Our team analyzed current national- and DoD-level security
configuration policies and guidance as well as industry configuration
recommendations

– Configuration guides such as the Defense Information Systems Agency’s
(DISA) Security Technical Implementation Guides (STIGs), Security
Requirements Guides (SRGs) and Interim Security Configuration Guides
(ISCGs) provide a basis for achieving consistent and secure configuration
implementation across the DoD

– Perhaps most importantly (to us) they are expressed in XCCDF

Guidance currently exists for:
– Android 2.2 (Dell) STIG Bundle

– BlackBerry STIG Bundle

– Apple iOS ISCG Bundle

– Windows Mobile 6.5 STIG Bundle, Windows 7 Tablet

– General Mobile Device STIG and Draft Mobile OS SRG
Source: http://iase.disa.mil/stigs/net_perimeter/wireless/smartphone.html

4

Mobile Operating System (MOS) Security

RIM BlackBerry OS
– BlackBerry Enterprise Server (BES) and BlackBerry

together provide thousands of mature configuration
capabilities

– MDM vendors typically do not provide much support for
BlackBerry devices

Fixmo Sentinel and Sentinel Server Compliance
Checker (SCC)

– Originated from NSA’s AutoBerry and AutoBES
technology

– Pre-configured with STIG definitions and references
when testing a device/server configuration (though not
SCAP-based)

5

Mobile Operating System (MOS) Security

Apple iOS
– Provides enterprise features out-

of-the-box through the Apple
MDM API

– An administrator can deploy one or
more configuration profiles to
manage iOS devices

– iOS has a special restrictions profile
which can disable certain device
functionality, such as the camera,
screen capture, or app store

– Disablement of Wi-Fi, Bluetooth,
and other capabilities are not
available through the Apple MDM
API and iOS does not provide
capabilities/APIs to supplement

NSA security guide &
associated SCAP content*

Source: http://images.apple.com/ipad/business/docs/iOS_MDM.pdf

* Available at http://www.nsa.gov/ia/mitigation_guidance/

security_configuration_guides/operating_systems.shtml

6

Mobile Operating System (MOS) Security

Google Android
– Open-source mobile OS maintained by the Open Handset

Alliance

Unique to the competition for a variety of reasons
– Google is not in the business* of manufacturing or selling

hardware or mobile devices, as are Apple and BlackBerry

– Various manufacturers—such as Motorola Mobility,
Samsung and HTC—each distribute their own set of
Android-based devices that can potentially run very
different versions of the OS

– When discussing Android, it is important to differentiate
between “Vanilla” Android (or the stock Google kernel and
associated software) from the different vendor-released
“flavors”

* This may be changing with the Nexus devices unveiled at Google I/O

7

Mobile Operating System (MOS) Security

“Vanilla” Android Security APIs
– Standard set of device security

settings which can be managed by
an organization

– The Device Administration API
provides 16 configurable security
settings and 3 actionable commands
(force password reset, wipe
device/restore to factory defaults,
and lock device)

– Additionally, apps can be installed
and granted special permissions that
allow administrative access to other
hardware components not covered
by the Device Administration API,
such as enabling/disabling Bluetooth
and Wi-Fi, and configuring use of
Near-Field Communications (NFC)

Policies supported by the Android-
native Device Administration API

– Password enabled
– Minimum password length
– Alphanumeric password required
– Complex password required
– Minimum letters required in password
– Minimum lowercase letters required in

password
– Minimum non-letter characters required

in password
– Minimum numerical digits required in

password
– Minimum symbols required in password
– Minimum uppercase letters required in

password
– Password expiration timeout
– Password history restriction
– Maximum failed password attempts
– Maximum inactivity time lock
– Require storage encryption
– Disable camera

 Sources: http://developer.android.com/guide/topics/admin/device-admin.html#policies

 http://developer.android.com/guide/topics/security/security.html#permissions

8

Mobile Operating System (MOS) Security

More on Android “flavors”…
– Large amount of variance between devices and OEMs/handset vendors

– Device manufacturers put their own “spin” on the OS/device builds and have
been known to strip out (or replace) some vanilla Android functionality to save
on resource usage and increase battery life

The differences between devices makes it difficult for an
organization to trust that each device is running at a known security
configuration baseline

– For example, if Android deployments are highly diverse, and the MDM
administrator issues a configuration that disables the camera, there will likely
be devices that will not implement the policy

9

Mobile Operating System (MOS) Security

Filling in the gaps – Enhanced APIs
– Samsung Approved For Enterprise (SAFE)

– Three Laws of Mobility (3LM)

How they work
– Support extremely granular and powerful system-level

security hooks for device and application management

– APIs lie dormant on the device and activate when the device
is associated and enrolled with a compatible MDM

Supported devices
– 3LM works with various OEMs, such as parent company

Motorola Mobility, HTC, Sony Ericsson, Sharp and Pantech

– The SAFE API is available on certain Samsung devices

Using the APIs
– 3LM provides its own MDM server (3LM Device Manager)

– Both Samsung and 3LM are working with third-party niche
MDM vendors (e.g., AirWatch, BoxTone, MobileIron) to
include support for their Enhanced APIs

10

Mobile Device Management (MDM) Suites

The MDM market has ballooned
tremendously over the past year, with
well over 100 participating vendors

Only a handful of vendors truly
differentiate their products with
unique capabilities and security
features

Mobile OSs provides limited
capabilities, so MDMs are challenged
to find ways that make their product
stand out Gartner’s 2012 Magic Quadrant for Mobile Device

Management (MDM) Software

Source: http://www.gartner.com/DisplayDocument?doc_cd=230508

11

Mobile Device Management (MDM) Suites

Push Notification Services (PNS)
– Push technology allows an MDM server to initiate communication with a client

and deliver commands rather than having to wait for the client to “check in”

– Mobile devices are heavily reliant on access to these Internet-hosted services

– Apple iOS and Google Android employ Apple Push Notification Service (APNs)
and Cloud to Device Messaging (C2DM), respectively, to enable push
notifications for system services and mobile apps

– All MDMs require these services in some capacity and, although feasible
alternatives exist to C2DM for modified Android builds, over-the-air (OTA)
device management of Apple iOS must make use of APNs

12

Mobile Device Management (MDM) Suites

Android “MDM” support through Exchange ActiveSync (EAS)
– EAS provides mobile device users with synchronized access to organizational e-

mail, calendars and contacts

– Well-documented protocol and implementation guidance from Microsoft

– Many MDMs manage Androids through the use of EAS

Concerns
– No guarantee of compliance as the EAS protocol simply requires a client to

acknowledge receipt of the policy

– Each vendor implements EAS differently

– Only products identified in the Microsoft Exchange ActiveSync

 Logo Program can be trusted to conform to the EAS protocol

 (and no Android devices currently qualify)

Sources: http://msdn.microsoft.com/en-us/library/hh285606(v=exchg.140)

http://msdn.microsoft.com/en-us/library/hh509085(v=exchg.140)

http://technet.microsoft.com/en-us/exchange/gg187968.aspx

13

MDM-based approach to Mobile Security Automation

One of our project’s goals is to “demonstrate the ability to leverage
configuration guidance, as expressed in SCAP, to extract
configuration compliance data of mobile devices from MDM(s)”

Why MDMs?
– Doesn’t involve development of applications to specific mobile OSs

– MDMs can support multiple MOS platforms

– Central repository of device configuration data

– “Low hanging fruit”

14

MDM-based approach to Mobile Security Automation

Approach
– Analyzed MDMs and how they stored information – found a commonality in

that many have SQL backend databases
– Can query using the sql57_tests from the independent definitions schema

Initial Hurdles
– Lack of sql57 support from ovaldi and other scanners
– Tailoring the SQL query to target a specific device
– Do we really need to develop another tool?

Strictly a “proof-of-concept”
– Prove its possible, capture requirements and lessons learned, and influence

vendors/industry to adopt/implement SCAP support into their products

The MDM-SCAP Middleware (MSM)
– Java-based
– Ingests SCAP content, evaluates assets, and outputs results to Excel and (DoD)

ARF/ASR
– Currently supports 2 MDMs

15

MDM-based approach to Mobile Security Automation

Mobile device configurations and policies, expressed in SCAP

content (XCCDF, OVAL, CPE), instruct the middleware on how to

evaluate the security of MDM-managed mobile devices



















Collection performed

using MDM proprietary

techniques

Additional device attributes (metadata) are tagged through an external interface

Middleware uses OVAL’s sql57 independent definitions to query MDM database for asset information

Reports are generated from the middleware as an Excel document or in DoD ARF/ASR format

Results are ingested into DISA’s Continuous Monitoring and Risk Scoring (CMRS) System



16

MDM-based approach to Mobile Security Automation

Issues
– Level of effort: database analysis, cooperation from MDM vendors

– Adaptability: OVAL content scaffold can be reapplied to other MDMs, but the
queries are still MDM-specific. Could be better to develop a schema and let
vendors determine how to implement the configuration tests

– Remote / multiple device scanning: how to target an individual device? With
SQL, that’s a WHERE clause and the MSM has to modify the query

What we’d like to see
– MDMs able to read and interpret SCAP content, scan MDM-managed devices

– Output in a standard format (ARF, ASR, OVAL Results)

17

MDM-based approach to Mobile Security Automation

In other words, we’d like to turn this…

<ind-def:sql57_object id="oval:com.bah.smmd:obj:1" version="1">

 <ind-def:engine>sqlserver</ind-def:engine>

 <ind-def:version operation="equals">2008</ind-def:version>

 <ind-def:connection_string>jdbc:sqlserver://127.0.0.1\SQLServer:1433;databaseName=

 MDMDatabase;user=username;password=password</ind-def:connection_string>

 <ind-def:sql>SELECT [AllowCamera] FROM [DeviceConfiguration]
 WHERE [guid] = 'device_guid'</ind-def:sql>

</ind-def:sql57_object>

Into this…

<android-def:camera_object id="oval:com.bah.smmd:obj:1" version="1">

</android-def:camera_object>

<android-def:camera_state id="oval:com.bah.smmd:ste:1" version="1">

 <android-def:current_status>disabled</android-def:current_status>

</android-def:camera_state>

18

Development of OVAL Schemas for Mobile Devices

Discussion points
– What configurations should be included in the OVAL Schemas?

For Android, just “vanilla” device configurations, additional APIs
(3LM/SAFE), or other hardware/software configurations that may be
monitored/enforced by an agent?

Is there interest in other(s)? For iOS, should the Mac OS plist definitions be
extended? How different will Windows 8 RT (ARM) be from Windows 8?

– Where should device compliance assessments be performed?

On a device, with scarce resources, traversing networks, and potential
bandwidth/connectivity issues?

Off device, but obtain configuration from the device or MDM?

On an MDM, but keeping in mind concurrency and trust issues – when was it
last updated/synced and is the policy actually being enforced?

