
XCCDF Developer Day Workshop

February 23, 2010

Introduction
This document contains a summary of the discussions and consensus decisions from the

February 23 XCCDF Developer Day Workshop held at the National Institute of Standards and

Technology. This workshop covered more than a dozen open issues in XCCDF on a variety of

topics. The slides and source material for the XCCDF workshop, as well as material from other

workshops from the week's events, can be found at

http://measurablesecurity.mitre.org/participation/devdays.html.

The rest of this document contains a summary of each of the topics discussed in the workshop.

The document concludes with a summary of points of consensus as well as an outline of follow-

on activities. Topic titles correspond to the titles from the Discussion Topics and Fix Proposals

document sent to the mailing list on Monday, February 15. An archived copy of this document

can be retrieved at

http://n2.nabble.com/attachment/4576272/0/Discussion%20Topics%20and%20Fix%20Proposals

.pdf or from the aforementioned workshop web page. Readers may find the Discussion Topics

and Fix Proposals document useful for its presentation of background information since the

current document will only present a minimal background of discussion topics.

http://measurablesecurity.mitre.org/participation/devdays.html
http://n2.nabble.com/attachment/4576272/0/Discussion%20Topics%20and%20Fix%20Proposals.pdf
http://n2.nabble.com/attachment/4576272/0/Discussion%20Topics%20and%20Fix%20Proposals.pdf

Contents
Introduction ... 1

Using CVSS/CCSS in Scoring.. 3

Using CVSS temporal and environmental vectors and CCSS vectors in the impact-metric field . 4

Update CPE Version ... 5

Explicit mapping of check results to XCCDF results ... 6

Segregated or Mixed Extensions to Value .. 7

Content Categorization ... 8

Clarify check-import behavior .. 9

Open discussion .. 11

Open the metadata field to additional types of metadata .. 12

Adding Dublin Core to status entries .. 14

Clarify use of selected vs. role="unchecked" vs. UNCHECKED rule result 15

Clarify the processing model for group selection and requires capabilities 16

Check-refs without names and the "multiple" property .. 17

Allow XCCDF check-content-ref statements to refer to other XCCDF documents 19

Clarify the order of operation of Profile selectors .. 20

Clarify the concept of "default values" in Values ... 21

Local vs. remote imports... 22

Add an enumeration to classify types of notice elements ... 23

Summary ... 24

Using CVSS/CCSS in Scoring
Background: It was proposed that XCCDF adopt new scoring models that utilized CVSS and

CCSS metrics in score computation.

Discussion Highlights:

It was noted that a new scoring model is not strictly needed – one could always compute a score

for a CVSS vector ahead of time and use that in the weight of a Rule. This proposal is more

about supporting the automated generation of "weights" from a provided scoring vector. It was

also noted that, if only a weight is provided then a reader cannot see how the author arrived at

this weight. However, if a weight is derived from a CVSS vector, the reader can see the reasons

for a particular weight. As such, the CVSS vector does provide useful documentation for

explaining weights.

It was noted that, unlike a CVSS vector, CCSS vectors cannot be computed ahead of time. This

is because the selections in a CCSS vector may vary depending on the actual settings on the

system rather than the nature of the control itself. As such, including a CCSS vector in a Rule's

impact-metric field is not realistic. It was noted that it would be useful if XCCDF had the ability

to record target system information that might be used to create a CCSS vector. Discussions of

this particular feature fell into the intended scope of the check-import discussion and so were

deferred until then.

A poll indicated that there was no significant interest in creating a new XCCDF scoring model.

Conclusions:

 There was not significant interest in a new scoring metric based on CVSS or CCSS.

Using CVSS temporal and environmental vectors and CCSS vectors in the
impact-metric field
Background: It was also proposed that the impact-metric field be expanded from only allowing

CVSS base vectors to including temporal and environmental vectors for both CVSS and CCSS.

Discussion Highlights:

Continuing from the prior discussion, it was noted that CCSS vectors could not usefully be

provided by authors in the impact-metric field. Discussion turned to whether CVSS temporal and

environmental vectors would be worthwhile to add to impact-metric. It was noted that both

scores are, by nature, dependent on temporal and environmental factors and thus less broadly

applicable than the base vector. It was also noted that temporal CVSS scores might be provided

by a third party other than the document author and, as such, any inclusion of this information

would also need to identify the source of the information so that provenance could be traced.

Finally, it was noted that within the CVSS community the temporal and environmental vectors

are considered experimental and that only the base vector is used in general practice. Given these

factors, it was concluded that there was little call to include temporal or environmental vectors in

impact-metric.

The question was raised as to at what stage of processing a CVSS (or CCSS) vector might be

useful. It was broadly agreed that this information was more relevant when processing results,

possibly during post-processing actions such as result aggregation, rather than within the original

body of the Benchmark. It was further noted that the impact-metric field is not generally used.

Based on these observations, a poll was taken and the decision made to deprecate the impact-

metric field within Rules.

Given that CVSS/CCSS metrics were felt to provide some useful information for result

processing, the question was raised as whether CVSS should be included in XCCDF results. The

general consensus was that XCCDF interpreters shouldn't be burdened with filling CVSS or

CCSS vectors and that this should be left to post-processing tools.

Conclusions:

 Deprecate the impact-metric field.

Update CPE Version
Background: The current reference to the CPE schema from the XCCDF specification and

schema is a couple versions out of date. Multiple ways to remedy this were put forward.

Discussion Highlights:

It was noted that the proposal to support all versions of CPE within a major release (past and

future) is complicated by the challenges of forward compatibility. Specifically, the evolution of

CPE within a given minor release could create new implicit support requirements among

XCCDF implementers without a corresponding explicit change in XCCDF version. (For

example, consider an interpreter written for XCCDF 1.2 when CPE 2.3 was the latest version

where XCCDF 1.2 supports any CPE 2.x. If CPE is revised to 2.4, documents that utilize CPE

2.4 would still be considered to use XCCDF 1.2. However, the aforementioned XCCDF 1.2

interpreter might not be able to correctly process this new content.) For this reason, it was felt

that an upper limit on the CPE version should be explicitly stated in the specification

requirements.

Regarding the proposal to support annotation of platform information with explicit namespace

and version identifiers, thus allowing authors to select arbitrary platform identifiers, no one felt

there was any need for a platform identification structure of this complexity. This left the third

from the initial proposals – to explicitly update the XCCDF specification to support the latest

version of CPE as of the date of publication of the revised XCCDF specification as well as

previous CPE versions within that major release. (This should be the version of CPE included in

SCAP 1.2.)

In response to the observation that the CPE schema namespace only changed on major versions,

it was suggested that CPE (and other SCAP namespaces) change on minor versions to make it

clear which version of CPE was intended by a namespace reference. Others argued this would

break backwards compatibility within a major version but proponents disagreed that this was

true. MITRE had recently held some internal discussions on this topic and agreed to publish a

summary of these conversations. The topic was tabled to give participants some time to think

about the issue.

Conclusions:

 Update XCCDF to use the latest (as of the release of SCAP 1.2) version of CPE.

 There is an SCAP-wide need for standardized namespace conventions. There should be

follow-on discussions on this topic.

Explicit mapping of check results to XCCDF results
Background: Currently, mappings of check results to XCCDF results exist by convention or

through higher-level documents, such as NIST IR 800-126. Community members suggested that

XCCDF checks be able to explicitly perform these mappings to override convention (or handle

any lack of convention).

Discussion Highlights:

It was noted that there are some cases where the default result mappings are not desired. For

example, OVAL inventory checks always map to pass if the software is found however

sometimes a policy statement seeks to preclude the presence of a piece of software.

It was noted that, if there was consistency in result values across the SCAP standards, this

problem would be much simpler. It was suggested that SCAP produce a standard list of results

for all its component specifications. Others were concerned that different check languages had

slightly different perspectives which needed to be reflected in their results and that

standardization could be counterproductive. It was agreed that proposal was out of scope for the

current discussion but that it should be raised in the context of a cross-standard SCAP discussion.

It was suggested that the correct XCCDF result could be ensured simply by making the check

language return the appropriate value. For example, if one wanted to ensure that detection of a

particular piece of software result cause a Rule to fail, instead of calling the OVAL definition an

inventory definition, call it a vulnerability definition so that detection maps to XCCDF Rule

failure. However, it was noted that this requires the OVAL definition to encapsulate the purpose

to which it is being put. As such, OVAL definitions would no longer be concerned with a simple

system state discovery, but would reflect a particular system policy based on that discovery.

While detection of malware might easily be viewed as always bad, sometimes software switches

from good to bad when it becomes obsolete, and the point in time at which that switch occurs

will vary between organizations. For example, a particular version of a web browser might be an

acceptable member of a system inventory until it becomes obsolete at which point its presence

(and the same checks that determine that presence) would then need to indicate a policy

violation.

The discussion made it clear that virtually all use cases involved a need to switch a pass to a fail

or vice versa. It was noted that a complex-check element already has the ability to "negate" a

result to toggle pass to fail or fail to pass. It was suggested, and the audience agreed, that adding

a "negate" field to a check element would solve most existing problems relating to result

mapping.

Conclusions:

 Add an optional "negate" attribute to checks that inverts the standard pass-fail mapping.

 There in interest in standardizing the result values across the SCAP standards. There

should be follow-on discussions on this topic.

Segregated or Mixed Extensions to Value
Background: Concerns were raised that a prior proposal to support more complicated structures

in XCCDF Values would be burdensome if the old (singleton) value types could be intermingled

with the new complex types arbitrarily.

Discussion Highlights:

The community was queried whether mixing values of differing complexity within a Value

presented any additional burdens. It was noted that implementers need to handle both kinds of

value anyway so there was no additional burden in needing to handle both at the same time. As a

result, a mixed format was agreed upon as having a simpler schema and providing more power.

Conclusions:

 The community expressed no concerns about the complexity of mingling data types.

Content Categorization
Background: A request was made to support the encapsulating of many-to-many relationships

within XCCDF Items.

Discussion Highlights:

It was noted that the ways of categorizing information would probably vary between

communities of interest. As such, any given categorization of content might not be broadly

applicable. It was noted content categorization had been attempted in the initial releases of

FDCC content in the mapping of Rules to NIST IR 800-53 controls, but that lacking a field to

support this type of categorization, the document had kludged this information in the "requires"

field. However, NIST indicated it was acting to remove these control references so this use case

was no longer as compelling.

It was suggested that categorization could simply be included as metadata within a Rule. There

was a general agreement that doing this was probably a better idea than creating a new dedicated

field for category information. Given that there was a later discussion planned on the subject of

metadata, the issue of including metadata in Rules was deferred until the later session.

Conclusions:

 Do not create a new field for content categorization. Instead, authors can use metadata

fields for this. Metadata field content will be discussed later.

Clarify check-import behavior
Background: Use of the check-import field in XCCDF Rule checks is currently under-defined.

It was proposed to establish and document the proper use of this field.

Discussion Highlights:

Two possible intents for this field were identifier: archiving discovered state information and

pulling in values for the purpose of exporting them back out as part of a check. Multiple

audience members noted that, whatever changes were accepted, this field cannot force multiple

interactions with a target system. In other words, it must remain possible to send a single set of

instructions to the target and get a single set of results back.

For the use case of archiving discovered information, it was noted that, while we could hold all

collected OVAL data in the TestResults, this would result in massive bloating of the result file.

People expressed an interest in getting targeted data elements rather than a flood of mostly

unwanted information. It was noted that OVAL Reporting might also be a solution to this.

However, use of OVAL Reporting would only be a solution for OVAL checks.

For archiving, a concern was raised that, without context, individual values would be

meaningless. For example, "is a given integer a timeout measured in minutes or seconds" or

"does 1 mean enabled or disabled?" Having a translation method was suggested. It was noted

that OVAL Reporting is intended to do this. A concern was raised about integrating evaluation

capabilities into XCCDF and it was suggested that we continue to keep such translation

functionality separate from XCCDF.

An informal poll indicated that there was also interest in being able to gather data for use in

populating exports, but only if this did not require multiple interactions with the target. It was

noted that by scoping imports to only be applicable within a Rule, that multiple interactions

would become unnecessary. It was noted that OVAL can already use queries to populate

variables used in subsequent queries. As such, allowing XCCDF to map imports to exports

would not create an entirely new capability, but it would add the ability to control the source of

these population queries from XCCDF.

It was suggested that a query control language could be developed to do this sort of population.

For example, the control language could initiate checks under certain conditions and with certain

discovered values. It was noted that a previous proposal to do exactly this, called the automation

schema, got little interest. It was also noted that, for the current discussion, we aren't looking for

a complex management of checks because we want to avoid multiple interactions.

The question was raised as to how to specifically identify the information we wanted.

Suggestions included:

 only use variables as targets since variables are already targeted values

 have an artifact stylesheet for XML-based languages that filtered XML content to get the

desired value

 define an expression language to tell XCCDF how to get result

Concern was also raised as to how to handle multiply instantiated targets. We discussed

returning full OVAL Items (from the system-characteristics schema) for archiving results but

multiple parties felt that this was not sufficiently precise and could lead to bloated result files.

The discussion was getting bogged down in the technical details. We concluded there is some

interest in both the archiving and variable population capabilities but that some specific

proposals as to how to get the relevant information in a useful fashion should be drafted and sent

to the community for review.

Conclusions:

 There is interest in using check-import for both discovery reporting and for feeding in to

subsequent export statements. However, there are technical complexities with how to

identify specific pieces of data from the check system. Additional proposals for this detail

will be developed and submitted for discussion.

Open discussion
Background: This part of the workshop gave participants a chance to raise issues that were not

otherwise on the agenda.

Discussion Highlights:

The discussion started with a question raised earlier in the day as to whether there were aspects

of XCCDF that no one was using. No such issues were explicitly noted. One participant

commented that there seemed to be some duplication across standards. The "type" field in

XCCDF Values was given as an example of this since variables are also typed within OVAL and

it is the OVAL data type that is ultimately used. It was explained that the Value type field

actually exists to filter values given to an XCCDF interpreter during tailoring and, as such, are

not actually duplicative of OVAL capabilities. However, it was agreed that the broader point is

something the community should be watchful of.

It was noted that many OVAL definitions reference platform tests as part of their checks. Since

these platform tests are then performed with every check, this causes redundant checking. It was

suggested that such platform checks not be included in OVAL checks. It was noted that this

behavior is not required by XCCDF or OVAL and that it is done at the discretion of the author.

As such, concerns on this topic should be raised with the content authors.

It was asked if there was interest in being able to indicate periodicity with which assessments

should be run. For example, noting that certain recommendations should be verified weekly

while others could be verified monthly. It was suggested that this fell under the broad topic of a

security automation control language, which is something that NIST has been working on. NIST

indicated that this use case could be supported by their control language work and noted that

development of this language is ongoing.

Conclusions:

 Although no specific features of XCCDF were noted in the workshop as being broadly

unused, community members are encouraged to post features that are seldom used, are

redundant with other standards, or which have an inconsistent use in practice.

 OVAL Reporting addresses multiple concerns about the volume of OVAL output files.

Specific proposals should be available for community review shortly.

 There is significant interest in functionality to control XCCDF use and result handling.

This overlaps with the proposed Control Language suite of protocols currently under

development by NIST. NIST will continue to work to advance these capabilities.

Open the metadata field to additional types of metadata
Background: A proposal was made to allow additional types of content in the Benchmark

metadata field.

Discussion Highlights:

The audience was asked if there were any objections to opening up the metadata field to allow

any type of XML content instead of just Dublin Core or SCCF (still currently in draft). One

participant noted that, as the author of an editing tool, they currently know exactly what to expect

in the metadata field. He commented that whenever a field is completely unconstrained it makes

things difficult for editors.

Other community members advocated for allowing unconstrained content. It was noted that

without such fields, authors end up attempt to place data in inappropriate locations. By providing

locations that allow arbitrary content, vendors can innovate without disrupting the normal

processing of other fields. Towards that end, it was suggested that, in addition to adding an

unconstrained metadata field in Rules, Groups, etc., that the sequences of these elements end

with another any tag to allow additional fields to be appended. However, others felt that it might

be better to limit the unconstrained content to a specific subfield of these items.

A concern was raised that, by completely opening the contents of the field, it could be abused in

a way that broke standardization. For example, vendors could encode information in the

metadata that modified how Benchmarks were processed, thus producing different results

between tools. It was suggested that the standard include specific language noting that metadata

was not allowed to take the place of existing XCCDF fields or affect the core processing

procedures, although it would still be allowed to contain instructions that could provide

additional value to those procedures. It was noted that various communities of interest could use

schema restriction to eliminate unwanted or unrecognized metadata tags and thus normalize

behavior in that way.

A concern was raised that a vendor might add a field to the metadata element but that a later

version of the standard might add a specific separate field for that purpose. An example of this

happening in OVAL was cited. The OVAL team, however, argued that this was a positive thing

in that it allowed the schema to be flexible until the specification was able to catch up with

practice. As long as the vendor switched to using the new canonical field when it became

available, there would be no conflict.

The audience was polled and voted to open metadata the field in Benchmark as well as add a

new open metadata field to Items.

A suggestion was made that the metadata support annotation to indicate information such as the

name, version, and location for the utilized metadata schema. Such information would assist in

processing of the metadata. For example, if a tool is able to utilize a specific metadata standard,

the annotations would allow the tool to quickly identify information that used that standard.

MITRE agreed to draft a proposal for metadata annotation based on example information to be

provided by Lt. Col. Joseph Wolfkiel.

Conclusions:

 Allow arbitrary metadata in Benchmark metadata fields.

 Allow the inclusion of arbitrary metadata in XCCDF Items in a new metadata field.

Conventions would be established to prohibit changes or control of the XCCDF

processing models via information encapsulated in the metadata field. Vendors could use

this field to support added functionality beyond that prescribed by the XCCDF

specification.

 A proposal will be created for labeling metadata to allow for better automated processing.

Adding Dublin Core to status entries
Background: A proposal was made to allow status fields to contain Dublin Core information to

support more expressive status statements.

Discussion Highlights:

After a short discussion it was agreed that there was interest in expanding the expressiveness of

the status field. After it was noted that since the old status field was a simple type it could not

cleanly be updated to hold complex content, a new DCStatus field was proposed that would be of

the complex type needed to hold the Dublin Core elements.

Conclusions:

 A new DCstatus field for Dublin Core information will be added wherever a status field

exists.

Clarify use of selected vs. role="unchecked" vs. UNCHECKED rule result
Background: There is some ambiguity surrounding the use of the role field. This discussion

sought to clarify its use.

Discussion Highlights:

It was explained that the purpose of the role field was to disable Rules through a mechanism

other than tailoring or explicit selection. This was done primarily to support draft content. It was

noted that the field is virtually unused and that the same functionality can be achieved in other

ways. The only change to the specification needed for identical behavior would be to modify the

flat-unweighted scoring model to keep a 0-weighted Rule from contributing to a final score. The

group voted to deprecate this field and tweak the flat-unweighted scoring model as described.

Conclusions:

 The role field will be deprecated.

 The "flat unweighted" scoring model will be modified to preserve 0-weights for Rules.

Clarify the processing model for group selection and requires
capabilities
Background: Some unintuitive results were noted in the current processing model for the

processing of require and conflict fields. This discussion sought to address this.

Discussion Highlights:

It was noted that, under the current requires/conflicts processing model, some edge cases will

result in unintuitive procedures. Multiple members of the audience suggested that, if these

behaviors were not intended by the author, testing of the benchmark should catch them. The

audience concluded that, as long as the processing model always resulted in the same result, that

there was little harm from these edge cases.

It was observed that the processing model of requires/conflicts is set out in the specification, but

it was requested that this be elaborated, possibly with examples, to ensure uniform

understanding.

Conclusions:

 The audience expressed no concern with the unintuitive results as long as all tools

behaved consistently in processing.

 The documentation will be enhanced to provide clearer processing instructions to ensure

consistency of tool processing.

Check-refs without names and the "multiple" property
Background: It was noted that there is no documentation of expected behavior of checks-

content-refs that lack a name attribute. It was also noted that there is confusion regarding the use

of the "multiple" property of Rules. This discussion sought to clarify both these functions.

Discussion Highlights:

It was noted that existing content exists that uses the assumption that if the name is absent from a

check-content-ref then the interpreter should use all checks in the targeted file. There was no

objection to continuing this practice.

It was noted that current practice is "all-or-nothing" if a file with multiple checks is referenced.

I.e. if one check in the referenced file fails, the entire Rule fails. Multiple parties noted that this is

not helpful because it doesn't provide any information as to what needs to be done to remediate a

failure.

It was suggested that the "multiple" property of checks be used to allow splitting of multiple

target checks, such as happens when a check-content-ref references a file without naming a

specific check in that file. This was countered by the observation that the intent of the multiple

property was to split result reporting for each instance of a target (e.g. for each record in a

database) and this should be maintained. It was noted that OVAL cannot support such splitting

because OVAL definitions find all instances and compute a result over the whole set. However,

others noted that the ability to split up results by instances would be useful. The group agreed

that it would be better to add this sort of new functionality to OVAL than remove it from

XCCDF.

Given the above suggestion, a proposal was made to create a new attribute, tentatively named

"multi-check", to split out results when multiple checks are referenced. This attribute would only

apply in the case of check-content-refs that did not name a specific check in a given file and

where the file contained multiple checks. If this was the scenario and multi-check was true, then

individual results would be recorded for each of the component checks in the referenced file.

Otherwise, XCCDF would continue to report a single result as it does in the current version of

XCCDF.

It was suggested that rule-result elements be marked with the same Rule ID to denote results

arising from a single Rule with multi-check or multiple set to true and that other fields of a rule-

result element would be used to distinguish component results. It was noted that there is already

an "instance" field in rule-results to differentiate results in the case of multiple being set to true.

Conclusions:

 Update documentation to indicate that a nameless check-content-ref should execute all

checks in the referenced file and AND their results together.

 Add a new field, tentatively named multi-check, that, if true and a nameless check-

content-ref is used, each check in the targeted file should be reported separately in the

XCCDF results.

 Update documentation of the "multiple" property to explicitly note that that setting it to

true should cause the check system to assess and report each target instance separately

and have these each reported separately in the XCCDF results.

Allow XCCDF check-content-ref statements to refer to other XCCDF
documents
Background: A proposal was made to allow XCCDF check-content-ref statements to refer to

XCCDF Rules or documents so that one Benchmark could be called from another.

Discussion Highlights:

A question was raised as to the order in which check-content-refs are executed within a single

check. It was noted that the specification dictates that the check-content-ref statements be

processed in the order in which they appear within the XML document, stopping the first time

the target can be resolved. By request, this will be further clarified in the specification. It was

suggested that, if there is a fall-through (that is, if one check-content-ref fails to resolve and the

interpreter must go on to the next reference) that a warning should be issued. It was countered

that, if the author didn't feel the fall-through was correct, it shouldn't be present. It was suggested

that the message field in rule-results could be used to record such warnings in a non-disruptive

manner. It was noted that failing to resolve all check-content-refs is undefined and that a

behavior for such an eventuality should be dictated.

It was noted that allowing XCCDF-XCCDF calls could allow FDCC to create a patch XCCDF

that allowed individual patches to be scored separately. The group discussed creating a control

structure for passing instructions to checking engines (such as those needed to tailor XCCDF). It

was noted that a proposed control structure for XCCDF was basically an external profile and that

this might argue for re-opening the proposal to support external profiles. As an alternative to

defining a new XML element to hold control instructions, it was suggested the control structure

could be passed using existing mechanisms by exporting a special variable. It was noted that

checking engines needed to create a stub variable to support this. It was also observed that the

proposed control structure was extremely similar to a full XCCDF Profile and that, if this was

going to be the case, it probably made sense just to reuse the current Profile structure instead of

inventing something new.

Members of the community then asked how necessary calling external XCCDF documents

would be. A few parties noted that it would be useful in some cases, but no one seemed to view

this capability as being necessary. In light of this observation, it was agreed that the issue should

be raised to the broader mailing list and, if significant support was not found there, the proposal

would simply be closed.

Conclusions:

 Update the documentation to make it clear the order in which check contents should be

evaluated.

 Support for the capability in general was only marginal. We will seek input from the

mailing list. Barring the appearance of significant support, the proposal will be rejected.

Clarify the order of operation of Profile selectors
Background: It was discovered that a previous decision to revise processing of Profiles selectors

under inheritance could lead to unexpected behaviors with regard to allowing an extending

Profile to change the behaviors of the extended Profile.

Discussion Highlights:

It was noted that the recently agreed-upon change in selector processing under extension could

lead to problems in some cases. As such, the issue was being reopened. It was observed that

eliminating the prohibition against multiple instances of the same type of selector naming the

same idref would allow an extending Profile to override the behavior of its parent without

resulting in the problems observed in the original proposal. There was no objection to removing

this restriction so the prior proposal was retracted and selectors will continue to be appended

under extension, but now duplication is permitted.

It was asked that examples of an extending Profile overriding a parent Profile be provided to help

clarify expectations.

Conclusions:

 The previous revision of Profile selector processing will be retracted. Selectors will

continue to be extended under the "append" processing model.

 All restrictions against duplication of selectors in profiles will be removed. Items may

now be modified by selectors any number of times.

 Update the documentation to clarify processing of selectors, especially in cases of

overlap.

Clarify the concept of "default values" in Values
Background: There is no description of default behavior in Values (i.e. the state of a Value

absent tailoring actions). This discussion sought to create a default behavior for Values.

Discussion Highlights:

An initial suggestion was made to treat the first instance of a tailorable element in the order in

which these elements appeared in the XML as the default. It was noted that there is already a

prededent for selecting a default value in Rule processing. Specifically, in the case of multiple

check elements within a Rule, checks with empty or absent selectors are used in the absence of

any tailoring actions. It was suggested that, for consistency, this precedent be followed within

Values. The community agreed.

It was noted that the value field of Values is slightly more complicated because at least one value

field must be present. This would not be the case if none of the value fields had an empty

selector. It was agreed that, in the absence of a value with an empty selector, the default value

field would be the first field in the order in which the fields appeared in the Value's XML.

Conclusions:

 The default value field in a Value will be the one with an empty or absent selector. If

there is no value field with an empty or absent selector, the first value field in top-down

processing of the XML will be the default field.

 For all other selectable Value fields, the default activity will be to ignore all fields

without an empty or absent selector.

Local vs. remote imports
Background: XCCDF imports other schemas using local, relative file paths. It was suggested

that these schemas should be imported from canonical remote sources.

Discussion Highlights:

Some participants noted that they operate in a closed environment without network access and

that pulling schemas from a remote location was not an option. Others noted that this situation

was not unique to the Department of Defense and that some commercial enclaves also frequently

operate without network access, especially those that are more security sensitive.

It was suggested that a common response is to use a catalog resolver when processing the

XCCDF schema. Such a resolver would look at the namespace to resolve and then uses its own

logic to determine where to find the actual schema file without using the schemaLocation

attribute. The resolver logic could access the schema remotely or from an internal archive based

on network availability and user preferences. In this scenario, the schemaLocation becomes a

canonical reference rather than direct input into processing behavior. It was noted that many

tools already use resolvers and have internal archives of commonly used files. It was also

suggested that the use of local files in security automation standards was resulting in branching

of the standards since each standard carried its own "suite" of utilized standards along with it.

The suggestion of using resolvers was countered by observations that some tools do not have

catalog resolvers and would therefore be unable to work with only a remote URI while a local

schemaLocation would always work regardless of the capabilities of the tool interpreting the

schema. A suggestion was made to use an HTTP proxy that could redirect a reference a remote

schema to an internal archive, but it was noted that at this required the user to make

infrastructure changes to support the new remote reference and that this was overly burdensome.

As it was clear that the group was not heading towards consensus, it was agreed that the issue

would be raised to the list.

Conclusions:

 The community was evenly split between those who wished to switch to remote

importing and those who wished to continue to use local imports. No consensus was

achieved. The issue will be raised on the mailing list to see if the deadlock can be broken.

Add an enumeration to classify types of notice elements
Background: It was suggested that a field be added to notice elements so authors could indicate

the specific use of a particular notice field for display purposes.

Discussion Highlights:

There was a suggestion that this sort of content annotation might be useful in other fields,

possibly as inline annotations in descriptions, warnings, etc. It was agreed to investigate this as a

follow-on activity but to limit the current conversation to the notice element.

Multiple parties indicated this type of annotation would be useful and, since there were no

objections, it was agreed that this should be added into the specification.

Conclusions:

 A field will be added to notice elements to indicate the general type of the content.

 A further proposal will be developed for adding similar capabilities to other fields in

XCCDF, such as Item warning fields.

Summary
The following changes will be made to XCCDF:

 Deprecate the impact-metric field.

 Update XCCDF to use the latest (as of the release of SCAP 1.2) version of CPE.

 An optional "negate" attribute will be added to the check element.

 The Benchmark metadata field will be opened to any content.

 A new metadata field will be created in Items.

 A new DCstatus field for Dublin Core information will be added wherever a status field

exists.

 The role field will be deprecated.

 The "flat unweighted" scoring model will be modified to preserve 0-weights for Rules.

 Updated documentation to provide clearer processing instructions for requires & conflicts

fields.

 Update documentation to indicate expected behavior of a nameless check-content-ref.

 Add a new multi-check field to allow separate reporting of individual checks when a

check-content-ref refers to a file of multiple checks without naming a check.

 Update the documentation of the "multiple" property.

 Update the documentation to make it clear the order in which check contents should be

evaluated.

 The previous revision of Profile selector processing will be retracted.

 All restrictions against duplication of selectors in profiles will be removed.

 Update the documentation to clarify processing of selectors, especially in cases of

overlap.

 Update documentation to provide default behavior of Value fields.

 Add a type field to notice elements.

The XCCDF development team will perform the following follow-on activities:

 Develop a proposal for how the check-import field could identify specific data elements

in a check language for import.

 Develop a proposal for labeling metadata in XCCDF metadata fields.

 Query the broader XCCDF community regarding interest in allowing XCCDF check-

content-ref statements to refer to other XCCDF documents.

 Query the broader XCCDF community to see if consensus can be achieved regarding

local vs. remote schema import statements.

 Develop a proposal for adding capabilities for categorizing content in various XCCDF

text fields.

 Hold a developer meeting regarding stand-alone TestResults. This was the only

discussion topic that we could not touch on because of time.

In addition, the following activities were deemed important for the broader SCAP community

and will be pursued by the following parties:

 Hold a discussion to standardize namespace conventions within SCAP – MITRE

 Look into an SCAP-wide convention on result values – NIST

 Present a summary of the proposed OVAL Reporting (formerly OCRL) language –

MITRE OVAL team

 Continue development of a control language protocol compatible with SCAP – NIST

Thank you to everyone who provided comments ahead of the workshop and to everyone who

was able to participate in the workshop.

